Synthesis of Mg(BH₄)(NH₂) and its investigation as a solid-state Mg^{2+} ion conductor Ronan LE RUYET^{a,d}, Benoît FLEUTOT^{a,d}, Romain BERTHELOT^{b,d},

Elodie SALAGER^{c,d}, Pierre FLORIAN^c, Raphaël JANOT^{a,d}

The development of rechargeable Mg batteries remains a challenge, particularly due to the difficulty to find non-corrosive liquid electrolytes with suitable ionic transport properties and a large electrochemical stability window¹. A possible improvement could come from the use of a solid electrolyte. In this sense, Mg(BH₄)(NH₂) has been reported by Higashi et al. as a solid Mg-ion conductor with a possible use in all-solid-state batteries².

In this study, the synthesis parameters of Mg(BH₄)(NH₂) were carefully investigated. In addition to crystalline Mg(BH₄)(NH₂), an intermediate phase was identified by an XRD analysis combined with ¹¹B MAS-NMR spectroscopy. The amount of this intermediate phase and its crystallinity were correlated to the synthesis parameters. Interestingly, the ionic conductivity is increased to $6x10^{-6}$ S.cm⁻¹ at 100° C with the presence of the amorphous intermediate phase; which is one of the highest conductivity values ever reported for a Mg²⁺ solid ionic conductor at such low temperatures^{3,4}.

The characterization of Mg(BH₄)(NH₂) as a solid electrolyte material will be presented; especially by discussing its chemical and electrochemical stabilities.

References

- [1] Mohtadi, R. & Mizuno, F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol., 2014, 5, 1291–1311.
- Higashi, S.; Miwa, K.; Aoki, M.; Takechi, K. A novel inorganic solid state ion [2] conductor for rechargeable Mg batteries. Chem. Commun. Chem. Commun, 2014, 50, 1320-1322.
- [3] Roedern, E.; Kühnel, R.-S.; Remhof, A.; Battaglia, C. Magnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries. Nat. Scientific Reports, 2017, 7, 4689.
- Ikeda, S.; Takahashi, M.; Ishikawa, J.; Ito, K. Solid Electrolytes with Multivalent [4] Cation Conduction. 1. Conducting Species in Mg-Zr-PO₄ system. Solid State Ionics, **1987**, 23, 125–129.

^a LRCS (CNRS UMR 7314), Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France.

^b ICGM (CNRS UMR 5253), Université de Montpellier CC 15-02, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France.

^c CEMHTI (CNRS UPR 3079), Université d'Orléans, 1D Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France.

^d Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459,33 Rue Saint Leu, 80039 Amiens, Cedex, France.