Magnesium solid electrolytes based on coordination complexes of magnesium borohydride

<u>Arndt Remhof,</u> Elsa Roedern, Ruben-Simon Kühnel, and Corsin Battaglia

Materials for Energy Conversion, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland

We present unprecedented high Mg^{2+} conductivity in chelated Mg complexes of magnesium borohydride, $Mg(BH_4)_2$. The highest conductivity of $5*10^{-8}$ Scm⁻¹ at 30 °C and $6*10^{-5}$ Scm⁻¹ at 70 °C was found in the borohydride-ethylenediamine complex $Mg(en)_1(BH_4)_2$ as shown in figure 1. The coordination complexes are stable against elemental magnesium, support cycling in a potential window of 1.2 V, and allow reversible magnesium plating/stripping [1]. Our results demonstrate that partially chelated Mg^{2+} complexes represent a promising platform for the development of an all-solid-state magnesium battery.

Acknowledgement:

Financial support by the Swiss National Science Foundation by the Sinergia project "Novel ionic conductors" under the contract number CRSII2_160749/1 is gratefully acknowledged

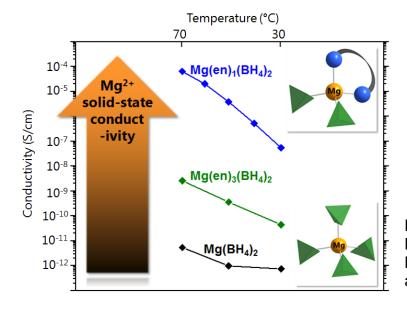


Figure 1 Mg ionic conductivities of Mg(BH₄)₂, Mg(en)₃(BH₄)₂ and Mg(en₁)(BH₄)₂

Reference

[1] Roedern, E.; Kühnel, R.-S.; Remhof, A; Battaglia, C. Magnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries. *Sci. Rep.* **2017**, 7, 46189.