Influence of Mg²⁺ on the ORR and OER in the Ionic Liquid BMP-TFSI

J. Schnaidt¹, T.L. Nguyen², Z. Jusys² and R.J. Behm^{1,2}

¹Helmholtz-Institute Ulm, Electrochemical Energy Storage, 89081 Ulm, Germany ²Institute of Surface Chemistry and Catalysis, Ulm University, 89081 Ulm, Germany E-mail: Johannes.schniadt@kit.edu

A major issue in the development of rechargeable Mg-air batteries is the reversibility of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) during discharge and charge of the battery. Ionic liquids such as 1-butyl-1-methylpyrrolidinium bis-(trifluoromethanesulfonyl) imide (BMP-TFSI) are promising candidates as electrolytes due to their low vapor pressure, high ionic conductivity and wide electrochemical potential window. Therefore, we investigated the ORR and OER in BMP-TFSI on glassy carbon (GC) electrodes, focusing on the effect of the electrode potential and of added Mg²⁺ ions on the reversibility and on the product distribution.

The ORR/OER in BMP-TFSI and 0.1 M Mg-TFSI₂/BMP-TFSI electrolytes was studied by cyclic voltammetry and potential step measurements on glassy carbon (GC) electrodes. The measurements were performed in a dual thin-layer flow cell [1] equipped with a non-porous thin (10 µm) Teflon membrane allowing for differential electrochemical mass spectrometry (DEMS), which was employed to monitor the oxygen consumption and oxygen evolution. DEMS measurements performed on a GC electrode under a flow of O₂-saturated BMP-TFSI show two distinct mass transport limited currents levels at ca. -0.4 and -1.2 V (vs. Mg/MgO), the one at -1.2 V being about twice as high as the other one. The O₂ consumption, however, is identical in both cases, indicating a change in the number of electrons per O₂ molecule from 1 to 2, i.e., a transition in the ORR selectivity from superoxide (O₂) to peroxide (O₂²-) formation. The ORR in Mg²⁺ containing BMP-TFSI proceeds via two peaks in the first negative-going scan. Decreasing currents in the following scans indicate a rapid passivation of the electrode surface. After excursions to -1.4 V, a reversible small O₂ consumption/release appears, which is attributed to superoxide formation/oxidation.

References

[1] Schnaidt, J.; Beckord, S.; Engstfeld, A.K.; Klein, J.; Brimaud, S.; Behm, R.J. A combined UHV-STM-flow cell set-up for electrochemical/electrocatalytic studies of structurally well-defined UHV prepared model electrodes. *Phys.Chem.Chem.Phys.* **2017**, 19, 4166-4178.