Computational studies of V₂O₅ and TiO₂ as cathode materials for Mg ion batteries

Kit McColl¹ and Furio Corà²

¹Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ E-mail: kit.mccoll.10@ucl.ac.uk

The development of cathode materials using earth abundant materials and offering suitable operating voltages, long cycle life and good kinetics is a crucial step towards Mg-ion battery technology that can provide performance advantages over Li-ion technology. Here we present our computational studies of two Mg-ion battery cathode materials that could fulfil these criteria: V_2O_5 and TiO_2 .

Orthorhombic α -V₂O₅ demonstrates reversible Mg intercalation at an average voltage of ~2.5 V and has a good theoretical capacity of ~300 mA h g⁻¹, however it suffers from several performance issues, the most critical of which is limited kinetics. Experimental results indicate that doping can be used to improve electrochemical performance for V₂O₅ as a Li ion cathode material,[1] and we speculate that similar improvements may be achieved by doping in the Mg_xV₂O₅ system. Here we present computational results investigating the location and effects of a range of metal ion dopants in α -V₂O₅, the factors affecting the stability of the important α - and δ - phases, and how doping can be tailored to modify Mg mobility.[2]

 TiO_2 is an attractive sustainable material for battery applications and has a theoretical capacity of ~ 290 mA h g⁻¹ for Mg storage, yet experimental capacity is limited to ~ 40 mA h g⁻¹. We use DFT to unravel the mechanisms that contribute to this low performance and how they may be overcome using rationally designed doping strategies.

References

- [1] C. F. Armer, M. Lübke, J. S. Yeoh, I. Johnson, K. McColl, Furio Corà, M. V. Reddy, J. Darr, X. Li, and A. Lowe, "Enhanced electrochemical performance of electrospun V2O5 fibres doped with redox-inactive metals," *J. Solid State Electrochem.*, *In Press*, 2018.
- [2] K. McColl, I. Johnson, and F. Corà, "Thermodynamics and defect chemistry of substitutional and interstitial cation doping in layered α-V2O5.," *Phys. Chem. Chem. Phys.*, vol. 20, pp. 15002–15006, 2018.