
Structural investigations of orthorhombic V₂O₅ nanowires in the full cell with magnesiated Mo₆S₈ anode

Qiang Fu^{a,*}, Angelina Sarapulova^a, Vanessa Trouillet^{a,c}, Lihua Zhu^a, Francois Fauth^d, Stefan Mangold^e, Edmund Welter^f, Sylvio Indris^{a,b}, Michael Knapp^{a,b}, Sonia Dsoke^{a,b}, Natalia Bramnik^a, Helmut Ehrenberg^{a,b}

^aInstitute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

^bHelmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Ulm, Germany. ^cKarlsruhe Nano Micro
Facility (KNMF), Karlsruhe Institute of Technology (KIT), Germany. ^dCELLS-ALBA Synchrotron, Barcelona,
Spain. ^eInstitute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany. ^fDeutsches Elektronen-Synchrotron DESY, Hamburg, Germany
Email: qiang.fu@kit.edu (Q. Fu)

The V_2O_5 cathode is known to be good material for lithium and magnesium insertion[1,2]. Therefore, it is a possible candidate as cathode material in magnesium-ion batteries. As known, the lithium insertion into V_2O_5 has already been very well studied[1]. However, only limited work focuses on the structural investigation upon Mg insertion into V_2O_5 . For example, Gershinsky et al. [3] reported that *ex situ* XRD confirmed the insertion of Mg into the crystal structure with a reversible capacity of ~ 150 mAh g⁻¹ for V_2O_5 thin film in the potential range 2.2 -3.0 V vs. Mg^{2+}/Mg . The detailed structural investigation of bulk V_2O_5 cathode in the whole insertion and extraction processes is still missing.

Figure 1: Discharge-charge profiles (a) and cycling performance (b) of $V_2O_5 \mid Mg(ClO_4)/AN \mid Mg_xMo_6S_8$ (x~2) full cell (C/20) in the voltage range of 1.6-0.01 V.

In the present work, orthorhombic V_2O_5 Nanowires were successfully synthesized via a hydrothermal method. A cell was first made to obtain the pre-magnesiated Mo_6S_8 anode due to the incompatibility of metallic Mg with chosen "standard" electrolyte. A full cell system was built using V_2O_5 as cathode, 1M Mg(ClO₄)₂ in acetonitrile (AN) and $Mg_xMo_6S_8$ (x~2) anode. The V_2O_5 nanowires deliver an initial discharge/charge capacity of 100 mAh $g^{-1}/114$ mAh g^{-1} and the highest discharge capacity of 128 mAh g^{-1} in the 5th cycle at C/20 rate in the full cell [4].

The structural evolution and oxidation state and local structural changes and the reversibility of the Magnesium insertion/extraction in the V_2O_5 were studied in the above mentioned full-cell system. The formation of the new phase Mg-rich Mg_xV₂O₅ during Mg insertion and the recovery of V₂O₅ during Mg extraction were identified via in situ synchrotron diffraction and ex situ Raman. The reduction/oxidation of vanadium during the Mg insertion/extraction was confirmed by in situ X-ray absorption spectroscopy (XAS) and ex situ XPS.

References

- [1] J. Yao et al. Energy Storage Materials **2018**, *11*, 205–259.
- [2] P. Saha et al. Progress in Materials Science 2014, 66, 1–86.
- [3] G. Gershinsky et al. *Langmuir* **2013**, 29 (34), 10964-10972.
- [4] Submitted to Journal of American Chemical Society.